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In this Brief Communication, a new approach to generalize the lattice Boltzmann method to produce
fluid flow consistent with the Brinkman equation is presented. The method described in this
communication both eliminates second order errors in velocity and improves stability over that of
a previously proposed lattice Boltzmann-based mode[DOI: 10.1063/1.1368846

Modeling fluid flow in porous heterogeneous materialsbut only a parameter that allows for matching of the shear
with more than one typical pore sizée.g., concrete, mi- stress boundary condition across the free-fluid/porous me-
croporous rocks, and fractured mateniaggesents a chal- dium interface. That is,£d{v)/dy(y=0")= ud{v)/dy(y
lenge because it is difficult to simultaneously resolve all the=07), wherey=0 specifies the location of the interface.
microstructural features of the porous medium that are aThe + and — refer to regions in the free-fluid and porous
different length scales. One possible approach is to dividenedium, respectively.
the porous medium into two regiond) the larger pores and Although the Brinkman equation is semiempirical in na-
(2) homogeneous regions of smaller pores. In the largeture it has been validated by a detailed numerical solution of
pores, the Stokes’ equations for incompressible flow hold: the Stokes’ equations in regions near the interface between

Vp=puV2v ) dissimilar region$. Nun_i_erical solution _of the Brinkman

’ equation by more traditional computational methdds.,
V.v=0, 2 finite difference and finite elemenis certainly possible.

. . . ) ) However, a recent lattice BoltzmarthB) based model by
wherep is the pressurey is the fluid velocity, andu is the Spaid and Phelan(henceforth denoted as model) Aas

fluid viscosity. Regions with the smaller pores are treated aﬁroven to be a simple and computationally efficient method

a permeable medium and fiow is described by Darcy's laW'To numerically approximate fluid flow described by the

n Brinkman equation. While model A is capable of describing
(Vp)=— E(v), () the more general case pf,/u+# 1, its treatment has always
assumedu./u=1 in the absence of any definitive knowl-
wherek is the permeability of the porous medium afd  edge about this ratio. However, theoretical stuliasd nu-
denotes the volume average. merical simulation$ have demonstrated that this limiting
The two boundary conditions to be satisfied at the pore¢ase is only true when the porosity—1 and that in reality
permeable medium interface are continuity of the fluid ve-;, /. increases with solid fractidrf for similar classes of
locity and the shear stre8darcy’s law alone is not suffi- porous media. For example, whe=50%, it was found that
Cient to Satisfy these boundary Conditions. The Brinkmanﬂelﬂm4 for an Over|apping Sphere mode| Of porous méd|a
equatior is a generalization of Darcy’s law that facilitates Indeed, u./u appeared to be independent of how the fluid
the matching of boundary conditions at an interface betweefgw was driven indicating that./x can be thought of as a
the larger pores and the permeable medium. Brinkman'snaterial parameter that depends on the pore geometry.

equation is Therefore, it is important to consider this more general case
P when constructing and validating a numerical method to ap-
(Vp)y=— v+ peVAV), (4)  proximate the Brinkman equation.

To produce flow consistent with the Brinkman equation,
wherev is the fluid velocity,u is the fluid viscosity, angk,  a dissipative forcind== — wv/k was used in model A This
is an effective viscosity parameter. The so-called effectivdforcing was incorporated into a LB model, normally used to
viscosity should not be thought of as the viscosity of the fluidapproximate the Navier—Stokes equations, by introducing a
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velocity shiftAv=7F/n (7is a relaxation parameter ands
the density in the Boltzmann equilibrium distribution ac-
cording to the method of Shan and CHerowever it is well
known that this approach will produce errors of ordéF?
in the pressure tens8rSuch errors can have a significant
impact on the fluid dynamics of such systems.

In this Brief Communication | will describe a lattice

Boltzmann approach to numerically approximate the Brink-

man equationhenceforth called model )Ballowing for the
case ofus/m# 1. In contrast to model &, will describe
how to incorporate the dissipative forcing, due to flow in the
porous medium, into dinear body force term so that the

O(7%v?) errors are avoided. Results from numerical simula-
tions, validating this approach and providing a comparison to

models A and B, will be given.

In the LB method® ! a typical volume element of fluid
is described as a collection of particles that are represented
terms of a particle velocity distribution function at each point
in space. The particle velocity distributiom(x,t) is the
number density of particles at nogetimet, and velocitye, ,
where (=1,...p) indicates the velocity direction. The time
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FIG. 1. Velocity field of a sheared system next to a porous medium. The
Hed triangles and circles represent data from the lattice Boltzmann simu-
lation (ue/pn=1 and ue/u=4, respectively. The solid lines are analytic
solutions of the Brinkman equation. The region below the dashedyline
=34.5(in units of lattice spacingcorresponds to the porous medium. The
moving wall is aty=44.

is counted in discrete time steps, and the fluid particles can
collide with each other as they move under applied forcesterm (model B, to second order in Hermite polynomials, in

For this paper the D3Q19 latticghree dimensional lattice
with b=19)*> will be utilized (the results can be easily
generalized to other latticesThe microscopic velocitye
equals all permutations ¢f-1,+1,0 for 1<i<12,(*+1,0,0
for 13<i<18, and(0,0,0 for i=19. The units ofg are the

the discrete velocity space of the D3Q19 lattice is
gi=—3tn(x)[(e—-Vv)-a+3(e-v)(e-a)]. ®

To first order, the body force term is written ag=

lattice constant divided by the time step. Macroscopic quan=3t;n(x)g-a. The body force model will henceforth be re-

tities such as the density(x,t) and the fluid velocity are
obtained by taking suitable moment sumsmfx,t). Here
n(x,t)=2=;n;(x,t) andv(x)==;n;e /n(x). In our units, the
molecular massn equals 1.

The time evolution of the particle velocity distribution
function satisfies the following LB equation:

ni(x+g,t+1)—ni(x,t) =Qi(x,t) —g;, 5

where (); is the collision operator representing the rate of
change of the particle distribution due to collisions apds

ferred to as model Bor B, depending on whether the first or
second order approximation is used, respectively. To model
the momentum loss in the Brinkman equation we take, as in
model A na= — uv/k. In addition, the relaxation time to be
used in the permeable medium is taken torhe 3(ue/n)

+3. In the limit of low Reynolds number, these modifica-
tions will recover the Brinkman equation with the option of
mel p#1. Comparison with model A, where the dissipative
forcing is introduced by replacing with v+ 7F/n in the
equilibrium distribution functioEqg. (7)], it is easily seen

the body force term. The collision operator can be approxifhat this substitution creates errors of ordérin the particle

mated by a BGK scheme'!
1
Q060 == ZImO) == (], ()

wheren(®¥(x,t) is the equilibrium distribution and is the

distribution function.

To first validate this model, a simple Couette flow ge-
ometry was usedsee Fig. 1 Starting with a parallel plate
geometry, a permeable medium is positioned such that there
is a gap between the permeable medium and the upper plate.
The upper plate is given a velocity, to the right. Analytic

relaxation time that controls the rate of approach to equilibsg|ytion of the Brinkman equation predicts a linear velocity

rium. The equilibrium distribution may take the following
form.lo,ll

N (x)=t;n(x)[1+3g-v+ (3gg :vww—Vv?)]. 7

For this model,t;=1/36 for 1=<i<12, t;=1/18 for 13<i
<18 andt;o=1/3. It has been shown that the above lattice
Boltzmann formalism leads to a velocity field that is a solu-
tion of the Navier—Stokes equation with the kinematic vis-
cosity y=3(7—3).10:11

In the continuum Boltzmann equation, the body force
term is writtena- Vo n(x,e), wherea is an acceleration field
due to a body force. A representatioof this body force

profile in the gap and an exponentially decaying velocity
profile in the porous medium. The rate of decay depends on
the value ofyue/w.?* In Fig. 1, velocity profiles are com-
pared for the case ofu./u=4 and the assumption of
mel w=1. The solid line is the analytic solution of the Brink-
man solution. Clearly, there is excellent agreement between
simulation and theory and there can be a considerable change
in the velocity profile whenu./un# 1. In addition, the lattice
Boltzmann method also does a reasonably good job captur-
ing the discontinuity of the gradient of the velocity field at
the free-fluid/porous medium interface for the case of
mel n=4. Note that this is achieved without direct incorpo-
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20 that scales asrwF, ie., nj=n®+nl+... where n!
i ~ 1.0 F plus the usual viscous correctiotfsSince, in lattice
Boltzmann methods, the pressure tensor is determined from
the momentZegn;, it is easy to show that contributions
from the body force to this moment sum is zero for modgl B
but produces a correction that scalesras® for model B,.
Careful inspection of model A shows that the same correc-
tion (~ 7. F) appears in model Ain addition to therin
correction).
Another interesting point is that model A was found to
A be numerically unstable at higher velocities shown in Fig. 2.
In this velocity regime, errors were found to be approxi-
; : 1 : mately 1%—2% for model B Of course it should be pointed
0.00 0.01 0.02 0.03 0.04 out that, due the second order nature of the error obtained
VELOCITY using model A, these discrepancies can be significantly re-
FIG. 2. Percent error in solution vs velocity. Data are shown for the cases o‘fjuce_d by making Sm_a”er or _t_akm_gT_ and 7, as Close_ as
=5 (x) and .= 10 (circles for model A, r,= 100 (triangles for model ~ POSsible to the theoretical stability limit of=1 for the lattice
B, and 7.=5 for model B (squares The solid lines correspond to the Boltzmann method. So while model A is still viable for
LU”CU?” avzc‘j’VTeAfe_a isha CO”tStam Chose”tto he:jp I‘J‘éide th; flf Wher_fhnomany applications, care must be taken in choosing appropri-
e o O 15 showh 5 SO o el B, model e S ate parameters for simulations. The two main advantages of
tion was obtained. Daténot shown were also obtained for model,Bvith model B over model A are: first, one need not be limited to
7.=10 and found to lie slightly below that shown feg=5 model A. a smaller range of parameter space and second, if the mod-
eler needs to incorporate additional forces in a simulation, a
ration of the stress boundary condition in the simulationcertain obfuscation of the physics can be avoided. Since in
model. model A forces are introduced by shifting the velocity in the
While model A should, in principle, account for the case equilibrium distribution, additional unphysical terms may
of ue/n#1 by settingr= 7, it would still suffer from er-  arise. For example, if one tak&s=F,+F,..., where theF;
rors in the particle distribution fUnCtion, which apprOXi- Corresponds to different fOfCGS, t}ﬁé error obtained pro-
mately scales asZ(v/k)2. Unfortunately, for many porous duces terms likem;F; which do not have a physical basis.
media of interest, this error may be large since, in general, aphjs is completely avoided if the forces are introduced in a
porosity is reducedu./n becomes larger as permeability |inear fashion as in model B.
decreases. In conclusion, a lattice Boltzmann model for numerical
As a simple test comparing models A and B, the case o§p|ution of the Brinkman equation is presented that can de-
fluid flow in a one dimensional homogeneous porous Mescribe the general case af. /1 # 1 and eliminate the second
dium was studied. Here, a pressure drop was applied at opyder errors of a previous proposed modiideed, incorpo-
posite ends of the porous medium and the fluid flow wasation of the dissipative forcing into a linear body force term
numerically determined throughout the system. For this teséxtends the validity of this Brinkman approach over a larger
case,k=1/11 in units of lattice spacing squared. Such arange of forcing and effective viscosity. It should also im-
choice ofk, ignoring tortuosity effects, corresponds to a po-prove numerical accuracy of flow simulations for other ap-
rous medium with a typical pore size of an order of latticepjications(Brinkman and non-Brinkmarincluding: dynami-

spacing as can be seen by noting that the permeability assga| simulations, linearly driven systems such as that by
C|at.ed with a cylln'drlcal Fube ik=r2/8, wherer is the tgbe electromotive forces, and fluid mixtures.
radius. When using this flow geometry, the solution of
Brinkman’s equation recovers Darcy’s law. Figure 2 com-
pares predictions of flow velocities from models A, Band IF. A. L. Dullien, Porous Media Fluid Transport and Pore Structu@nd
; . . - ed. (Academic, San Diego, 1992

BZ' Shown is the percent errqrE_’E) In the_SOIUtIOn’ defined 2J. Koplik, H. Levine, and A. Zee, “Viscosity renormalization in the Brink-
as PE=|(Vs—Vy)/V,|, whereVj is the fluid velocity deter-  man equation,” Phys. Fluidg6, 2864(1983.
mined from the simulation an¥, is the theoretical predic- 3H._C. Brinkman, “A calculation of the viscous force exerted by a flowing
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lution of the Brinkman eaquation will not depend since “N. Martys, D. P. Bentz, and E. J. Garboczi, “Computer simulation study

i . ; q p . o8 of the effective viscosity in Brinkman’s equation,” Phys. Fluiels1434
the effective viscosity does not play a role in Darcy flow. (1994
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